Automatic Building Extraction from Lidar Data Covering Complex Urban Scenes
نویسندگان
چکیده
This paper presents a new method for segmentation of LIDAR point cloud data for automatic building extraction. Using the ground height from a DEM (Digital Elevation Model), the non-ground points (mainly buildings and trees) are separated from the ground points. Points on walls are removed from the set of non-ground points by applying the following two approaches: If a plane fitted at a point and its neighbourhood is perpendicular to a fictitious horizontal plane, then this point is designated as a wall point. When LIDAR points are projected on a dense grid, points within a narrow area close to an imaginary vertical line on the wall should fall into the same grid cell. If three or more points fall into the same cell, then the intermediate points are removed as wall points. The remaining non-ground points are then divided into clusters based on height and local neighbourhood. One or more clusters are initialised based on the maximum height of the points and then each cluster is extended by applying height and neighbourhood constraints. Planar roof segments are extracted from each cluster of points following a region-growing technique. Planes are initialised using coplanar points as seed points and then grown using plane compatibility tests. If the estimated height of a point is similar to its LIDAR generated height, or if its normal distance to a plane is within a predefined limit, then the point is added to the plane. Once all the planar segments are extracted, the common points between the neghbouring planes are assigned to the appropriate planes based on the plane intersection line, locality and the angle between the normal at a common point and the corresponding plane. A rule-based procedure is applied to remove tree planes which are small in size and randomly oriented. The neighbouring planes are then merged to obtain individual building boundaries, which are regularised based on long line segments. Experimental results on ISPRS benchmark data sets show that the proposed method offers higher building detection and roof plane extraction rates than many existing methods, especially in complex urban scenes.
منابع مشابه
Urban Vegetation Recognition Based on the Decision Level Fusion of Hyperspectral and Lidar Data
Introduction: Information about vegetation cover and their health has always been interesting to ecologists due to its importance in terms of habitat, energy production and other important characteristics of plants on the earth planet. Nowadays, developments in remote sensing technologies caused more remotely sensed data accessible to researchers. The combination of these data improves the obje...
متن کاملUrban scene modeling from airborne data
Analysis and 3D reconstruction of urban scenes from physical measurements is a fundamental problem in computer vision and geometry processing. Within the last decades, an important demand arises for automatic methods generating urban scenes representations. This thesis investigates the design of pipelines for solving the complex problem of reconstructing 3D urban elements from either aerial Lid...
متن کاملAutomatic Road Extraction from Dense Urban Area by Integrated Processing of High Resolution Imagery and Lidar Data
Automated and reliable 3D city model acquisition is an increasing demand. Automatic road extraction from dense urban areas is a challenging issue due to the high complex image scene. From imagery, the obstacles of the extraction stem mainly from the difficulty of finding clues of the roads and complexity of the contextual environments. One of the promising methods to deal with this is to use da...
متن کاملA Multi-Agent strategy for automatic 3D object recognition based on the fusion of Lidar range and intensity data
Three dimensional object recognition and extraction from Lidar and other airborne or space borne data have been an area of major interest in photogrammetry for quite a long time. Therefore, many researchers have been trying to study and develop automatic or semi-automatic approaches for object extraction based on sensory data in urban areas. Lidar data have proved to be a promising data source ...
متن کاملBuilding Point Detection from Vehicle-Borne LiDAR Data Based on Voxel Group and Horizontal Hollow Analysis
Information extraction and three-dimensional (3D) reconstruction of buildings using the vehicle-borne laser scanning (VLS) system is significant for many applications. Extracting LiDAR points, from VLS, belonging to various types of building in large-scale complex urban environments still retains some problems. In this paper, a new technical framework for automatic and efficient building point ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014